Fast Nonnegative Matrix Factorization: An Active-Set-Like Method and Comparisons

نویسندگان

  • Jingu Kim
  • Haesun Park
چکیده

Nonnegative matrix factorization (NMF) is a dimension reduction method that has been widely used for numerous applications including text mining, computer vision, pattern discovery, and bioinformatics. A mathematical formulation for NMF appears as a non-convex optimization problem, and various types of algorithms have been devised to solve the problem. The alternating nonnegative least squares (ANLS) framework is a block coordinate descent approach for solving NMF, which was recently shown to be theoretically sound and empirically efficient. In this paper, we present a novel algorithm for NMF based on the ANLS framework. Our new algorithm builds upon the block principal pivoting method for the nonnegativity-constrained least squares problem that overcomes a limitation of the active set method. We introduce ideas that efficiently extend the block principal pivoting method within the context of NMF computation. Our algorithm inherits the convergence property of the ANLS framework and can easily be extended to other constrained NMF formulations. Extensive computational comparisons using data sets that are from real life applications as well as those artificially generated show that the proposed algorithm provides state-of-the-art performance in terms of computational speed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization

This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...

متن کامل

A Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization

This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...

متن کامل

A new approach for building recommender system using non negative matrix factorization method

Nonnegative Matrix Factorization is a new approach to reduce data dimensions. In this method, by applying the nonnegativity of the matrix data, the matrix is ​​decomposed into components that are more interrelated and divide the data into sections where the data in these sections have a specific relationship. In this paper, we use the nonnegative matrix factorization to decompose the user ratin...

متن کامل

A Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem.  At each step of ALS algorithms two convex least square problems should be solved, which causes high com...

متن کامل

Supervised Classification of Texture Patterns with Nonnegative Matrix Factorization

Nonnegative Matrix Factorization (NMF) is an efficient tool for clustering and supervised classification of various objects, including text document, musical recordings, gene expressions, and images. In this paper, we are concerned with supervised classification of texture patterns. NMF is used for creating localized nonnegative feature vectors and low-dimensional nonnegative encoding vectors f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2011